EE 330 Homework 5 Solutions

These solutions use the 0.5μ and a λ of 0.3

1. Length of interconnect = $400 \lambda = 120 \mu m$

Width of interconnect = $2 \lambda = 0.6 \mu m$

No. of squares =
$$400/2 = 200$$

Sheet resistance of interconnect = $23.5 \Omega/_{SQ}$

Resistance =
$$23.5 * 200 = 4.7 k\Omega$$

Capacitance from interconnect to substrate

Capacitance of Poly 1 substrate from the table given = $84 \text{ } aF/_{\mu m^2}$

Interconnect area =
$$0.6 \mu m * 120 \mu m = 72 \mu m^2$$

Capacitance of the substrate =
$$84 \, aF/_{\mu m^2} * 72 \, \mu m^2 = 6.048 \, fF$$

Capacitance between metal and interconnect

Capacitance of Poly and Metal1 from the table given = $56 \, aF/_{\mu m^2}$

Area of contact between poly and metal = $72 \mu m^2$

Capacitance =
$$59 \frac{aF}{\mu m^2} * 72 \mu m^2 = 4.248 fF$$

2. Length of the interconnect = $200 \mu m$

Width of interconnect = $2 \mu m$

No. of squares
$$= 200/2 = 100$$

Resistance = 20Ω

Sheet resistance =
$$20/100 = 0.2 \Omega/sq$$

Resistivity of copper = 17.2
$$n\Omega * m$$

Thickness = Resistivity/Resistance = **86** *nm*

For
$$Ag \Rightarrow$$

Resistivity of silver= 15.9 $n\Omega * m$

Sheet resistance = Resistivity /thickness = 15.9
$$n\Omega * m$$
 / 86 nm = 0.185 $\Omega/_{SQ}$

Length =
$$W*R/Rs = 216.4 um$$

Overlap Cap			
Layers	Overlap Area (μm^2)	$aF/_{\mu m^2}$	Cap (aF)
Poly-Sub	89.1	84	7484.4
M1- Sub	4.86	27	131.22
M2-sub	15.12	12	181.44
M3-Sub	5.4	7	37.8
M1-Poly	24.3	56	1360.8
M2-Poly	25.92	15	388.8
M3-Poly	12.42	9	111.78
M2-M1	9.72	31	301.32
M3-M1	4.86	13	63.18
M3-M2	6.48	35	226.8
Fringe Cap			
Layers	Length (µm)	aF/(µm)	Cap (af)
Poly-Sub	37.8	0	0
M1- Sub	9	49	441
M2-sub	15.6	33	514.8
M3-Sub	9.6	23	220.8
M1-Poly	5.4	59	318.6
M2-Poly	7.2	38	273.6
M3-Poly	3.6	28	100.8
M2-M1	5.4	51	275.4
M3-M1	3.6	34	122.4
M3-M2	7.2	52	374.4

4. Sheet resistance for high resistance poly = $44\Omega \setminus \Box$

Resistance = 3000Ω

No. of squares = 3000/44 = 68

L = 3W; Let's use a $2\lambda \times 2\lambda$ for one square. The following layout is approximately 68 squares and the bounding rectangle meets the aspect ratio requirements.

Problem 5.

Using N^+ active and Poly 1. Since this has the highest capacitance.

Capacitance of : $C_{N+_Poly} = 2434 \frac{aF}{\mu m^2}$

Area of Capacitance: $(C = C_d * A) : A = \frac{C}{C_d} = \frac{150 \, fF}{2434 \, aF}_{\mu m^2} = 61.63 \, \mu m^2$

Problem 6

Nominal Value of resistance =
$$\rho$$
. Length ρ remarks ρ remarks

7. Part A:

Begin by calculating the number of squares in each serpentine structure. We can calculate the number of horizontal lines in the serpentine structures as follows:

$$N_{Horizontal} = \underbrace{\begin{array}{c} Length_{die} & 1cm \\ \\ Width Interconnect + Width Spacing \\ \end{array}}_{} = 50000$$

So we have 50,000 horizontal lines, each 1cm long. This amounts to 5 × 10 9 squares.

To connect these lines, we have $N_{Horizontal}$ – 1 vertical segments, each 0.1μ wide. This amounts to 49,999 squares.

In total, we have $5 \times 10^9 + 49999$ squares per resistor. Each metal layer has a resistivity of $0.12\Omega/sq$, so each resistor has a resistance of $600M\Omega$. When combined in parallel, we have a resistance of $200M\Omega$.

Part B:

Each resistor is only $0.1\mu m$ thick, so each can carry a maximum density of $150\mu A$. Placed in parallel, this means the total resistor can carry up to $450\mu A$.

Part C:

$$P = I^2R = [450\mu A]^2[200M\Omega] = 40.5W$$

Problem 8 If the resistance in the interconnect is neglected, it acts as a capacitor in parallel with the input capacitance of the second inverter.
$$C_{z}=(C_{0})(W_{L})$$

a) $R_{0}Q = 2K$
 $C_{z} = (C_{0})(W_{L})$
 $C_{z} = (C_{0})(W_{L})$
 $C_{z} = (C_{0})(W_{L})(W_{L})$
 $C_{z} = (C_{0})(W_{L})(W_{L})(W_{L})$
 $C_{z} = (C_{0})(W_{L})(W_{L})(W_{L})(W_{L})$
 $C_{z} = (C_{0})(W_{L})(W_{L})(W_{L})(W_{L})(W_{L})$
 $C_{z} = (C_{0})(W_{L})(W_{$

c) The only change with poly (again negleting the interconnect resistance) is $Cd=84af/u^2 \text{ so } C_{I}=(0.6)(200)84af/u^2=10.1fF \text{ so } C_{L}=13.1fF \text{ and thus}$ tHL=(2K)(10.1fF)=20.2psec